United Nations Educational, Scientific and Cultural Organization and International Atomic Energy Agency THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS SOME RESULTS ON THE INTERSECTION GRAPHS OF IDEALS OF RINGS

نویسندگان

  • S. Akbari
  • Abdus Salam
چکیده

Let R be a ring with unity and I(R) be the set of all non-trivial left ideals of R. The intersection graph of ideals of R, denoted by G(R), is a graph with the vertex set I(R) and two distinct vertices I and J are adjacent if and only if I ∩ J 6= 0. In this paper, we study some connections between the graph-theoretic properties of this graph and some algebraic properties of rings. We characterize all rings whose intersection graphs of ideals are not connected. Also we determine all rings whose clique number of the intersection graphs of ideals are finite. Among other results, it is shown that for every ring, if the clique number of G(R) is finite, then the chromatic number is finite too and if R is a reduced ring both are equal. MIRAMARE – TRIESTE August 2010 1 s − [email protected] 2 r − [email protected] 3 [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

United Nations Educational Scientific and Cultural Organization and International Atomic Energy Agency THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS SOME RELATIONS BETWEEN RANK, CHROMATIC NUMBER AND ENERGY OF GRAPHS

The energy of a graph G is defined as the sum of the absolute values of all eigenvalues of G and denoted by E(G). Let G be a graph and rank(G) be the rank of the adjacency matrix of G. In this paper we characterize all the graphs with E(G) = rank(G). Among other results we show that apart from a few families of graphs, E(G) ≥ 2max(χ(G), n−χ(G)), where G and χ(G) are the complement and the chrom...

متن کامل

IC/98/108 United Nations Educational Scientific and Cultural Organization and International Atomic Energy Agency THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS RANDOM FIXED POINTS OF SET-VALUED MAPS

Some random fixed point theorems for set-valued random operators under very mild conditions are established. Some recent results of O'Regan ([Proc. Amer. Math. Soc. 126 (1998), 3045-3053] and [Computers Math. Applic. 35 (1998), 27-34]) are improved significantly. The discussion in this paper underlines, in addition to generality, the unifying aspects of our result.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010